Folgen
Rafael Murrieta-Cid
Titel
Zitiert von
Zitiert von
Jahr
Optimal paths for landmark-based navigation by differential-drive vehicles with field-of-view constraints
S Bhattacharya, R Murrieta-Cid, S Hutchinson
Robotics, IEEE Transactions on 23 (1), 47-59, 2007
1592007
Distance-optimal navigation in an unknown environment without sensing distances
B Tovar, R Murrieta-Cid, SM LaValle
IEEE Transactions on Robotics 23 (3), 506-518, 2007
1562007
Planning exploration strategies for simultaneous localization and mapping
B Tovar, L Munoz-Gómez, R Murrieta-Cid, M Alencastre-Miranda, ...
Robotics and Autonomous Systems 54 (4), 314-331, 2006
1452006
Volumetric next-best-view planning for 3D object reconstruction with positioning error
JI Vasquez-Gomez, LE Sucar, R Murrieta-Cid, E Lopez-Damian
International Journal of Advanced Robotic Systems 11 (10), 159, 2014
1422014
Calcul de translation et rotation par la transformation de Fourier
B Marcel, M Briot, R Murrieta
TS. Traitement du signal 14 (2), 135-149, 1997
126*1997
Optimal navigation and object finding without geometric maps or localization
B Tovar, SM La Valle, R Murrieta
2003 IEEE International Conference on Robotics and Automation (Cat. No …, 2003
922003
Surveillance strategies for a pursuer with finite sensor range
R Murrieta-Cid, T Muppirala, A Sarmiento, S Bhattacharya, S Hutchinson
The International Journal of Robotics Research 26 (3), 233-253, 2007
862007
A reactive motion planner to maintain visibility of unpredictable targets
R Murrieta-Cid, HH González-Banos, B Tovar
Proceedings 2002 IEEE International Conference on Robotics and Automation …, 2002
822002
View/state planning for three-dimensional object reconstruction under uncertainty
JI Vasquez-Gomez, LE Sucar, R Murrieta-Cid
Autonomous Robots 41, 89-109, 2017
712017
A sampling-based motion planning approach to maintain visibility of unpredictable targets
R Murrieta-Cid, BÍ Tovar, S Hutchinson
Autonomous Robots 19, 285-300, 2005
692005
A survey on deep learning and deep reinforcement learning in robotics with a tutorial on deep reinforcement learning
EF Morales, R Murrieta-Cid, I Becerra, MA Esquivel-Basaldua
Intelligent Service Robotics 14 (5), 773-805, 2021
642021
View planning for 3D object reconstruction with a mobile manipulator robot
JI Vasquez-Gomez, LE Sucar, R Murrieta-Cid
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2014
642014
An efficient motion strategy to compute expected-time locally optimal continuous search paths in known environments
A Sarmiento, R Murrieta-Cid, S Hutchinson
Advanced Robotics 23 (12-13), 1533-1560, 2009
622009
Landmark identification and tracking in natural environment
R Murrieta-Cid, M Briot, N Vandapel
Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots …, 1998
531998
A complexity result for the pursuit-evasion game of maintaining visibility of a moving evader
R Murrieta-Cid, R Monroy, S Hutchinson, JP Laumond
2008 IEEE International Conference on Robotics and Automation, 2657-2664, 2008
522008
An efficient strategy for rapidly finding an object in a polygonal world
A Sarmiento, R Murrieta, SA Hutchinson
Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and …, 2003
492003
Time-Optimal Motion Strategies for Capturing an Omnidirectional Evader Using a Differential Drive Robot
U Ruiz, R Murrieta-Cid, JL Marroquin
IEEE Transactions on Robotics 29 (5), 1180-1196, 2013
482013
Visual navigation in natural environments: from range and color data to a landmark-based model
R Murrieta-Cid, C Parra, M Devy
Autonomous Robots 13, 143-168, 2002
472002
Hierarchical ray tracing for fast volumetric next-best-view planning
JI Vasquez-Gomez, LE Sucar, R Murrieta-Cid
2013 International conference on computer and robot vision, 181-187, 2013
452013
Maintaining visibility of a moving target at a fixed distance: The case of observer bounded speed
R Murrieta, A Sarmiento, S Bhattacharya, SA Hutchinson
IEEE International Conference on Robotics and Automation, 2004. Proceedings …, 2004
442004
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20